
A Fast TSP Solver Using GA on JAVA

Hiroaki SENGOKU Ikuo YOSHIHARA
Systems Development Laboratory, Graduate School of Engineering,

Hitachi, Ltd. Tohoku University
Kawasaki, 215 JAPAN Sendai, 980-77 JAPAN

Abstract

A hybrid algorithm using GA and heuristics for
rapid solution of Travelling Salesperson Problems
(TSP) is presented. We developed a JAVA program
based on this algorithm. Visiting our web pages, ev-
eryone can easily try our TSP solver. Since JAVA
programs are executable on many platforms, any one
who design a new TSP algorithm can compare his own
solver and ours on the same machine. Using our pro-
gram as the criterion, TSP researchers can evaluate
their algorithms objectively.

1 Introduction

The Genetic Algorithm (GA)[1] is an optimizing al-
gorithm that is modeled after the evolution of organ-
isms. Some of the GA's merits are that it can be easily
developed because it does not require detailed knowl-
edge about the problem, it can search globally, and it
can adapt to the changing conditions in the problem.

Despite of these merits, GA is often slower than
conventional methods such as heuristic searches. This
is because GA does not utilize explicitly the knowledge
of how to search for the solutions. Therefore, hybrid
methods that combine GA with other techniques have
been attempted.

The TSP solver we presented[2] is one of the hy-
brid methods. It uses GA and the 2opt method (sec-
tion 2.1). Owing to the 2opt, it is much faster than
other TSP solvers based on GA alone.

Generally, it is di�cult to compare two approximate
algorithms objectively. Some algorithms have the ad-
vantage of high speed, but have the disadvantage of a
low success rate in �nding the optimum solution.

The best way to compare two methods is by running
them both on the same machine. But there are few
such programs in public domain[4], and we have not
found a program that can solve the problems listed in
TSPLIB[5].

Consequently, we wrote a JAVA1 program based on

1JAVA is a trademark of Sun Microsystems, Inc.

our proposed method, and made it public on our page
on the World Wide Web (WWW). JAVA programs are
executable on many platforms, so people who have de-
veloped a TSP solver can compare their programs and
ours by running both programs on the same machine
under equal conditions.

We also developed a graphical user interface. Peo-
ple can freely situate towns by using a mouse, and
solve the problem they constructed. It's easy and fun.
It's helpful for students studying the basics of com-
puter algorithms.

In section 2, we explain our method. In section 3,
we show the WWW page in which we present our TSP
program.

2 A TSP solver: 2optGA

We present a hybrid method[2] that uses GA and
the 2opt method. In our GA, the 2opt method pro-
vides mutation, while the crossover operator provides
the capability of jumping out from the local minima,
where the solution often falls where only 2opt is used.

The algorithm consists of the following steps.

Initialization: Generation of M individuals ran-
domly.

Natural Selection: Eliminate pe% individuals. The
population decreases by M � pe=100.

Multiplication: ChooseM�pe=100 pairs of individ-
uals randomly and produce an o�spring from each
pair of individuals. The population reverts to the
initial population M .

Mutation by 2opt: Choose pi% of individuals ran-
domly and improve them by the 2opt method.
The elite individual, or the individual that has
the best �tness value in the population, is always
chosen. If the individual is already improved, do
nothing, because it cannot be further improved
by 2opt.

We now describe the detail of each step.

2.1 Mutation by 2opt

The 2opt method is one of the most well-known lo-
cal search algorithms among TSP solving algorithms.
It improves the tour edge by edge and reverses the or-
der of the subtour. For example, imagine a tour as
shown in the upper part of Fig. 1. Remove the two
edges ab and cd, and reverse the order of the subtour
(from b to c), and add the two edges ac and bd. This
gives us a tour as shown in the lower part of Fig. 1.
The lower tour is shorter than the upper one because
ab+ cd > ac + bd.

a

b

c

d

a

b

c

d

Figure 1: The 2opt method

We check every pair of edges, for example, ab and
cd. If ab+ cd > ac+ bd holds, we improve them in the
same way as shown in Fig. 1. Actually, if both ac > ab
and bd > cd hold, then it is not necessary to check the
edges. Therefore we can skip the pairs whose edges
are far away from each other.

We repeat the procedures described above until no
further improvement can be made.

2.2 Crossover in Multiplication

When we apply the 2opt method to a solution, the
solution often falls into a local minimum. Then it can-
not be improved further by the 2opt method. Con-
sider two solutions that have fallen into di�erent local
minima. Potentially, each solution may have the best
subtour for a di�erent part of the tour. Then, we can
make a better solution if we combine those best sub-
tours appropriately. We cannot say, of course, which
of the subtours are good, but after many trials, we can
expect o�spring solutions to be located in the valley
of the global minimum as shown in Fig. 2.

We propose a new crossover operator that acquires
the longest possible sequence of parents' subtours.
We named it `Greedy Subtour Crossover (GSX)'. We
showed[3] by experiments that using the GSX, the so-
lution can pop up from local minima more e�ectively
than by using simulated annealing (SA) methods.

In the GSX, we use the path representation for
a genetic coding. For example, the chromosome

tour

to
ur

 le
ng

th

child

crossover

Figure 2: Pop-up from local minima.

g = (D;H;B;A;C; F;G;E) means that the salesper-
son visits towns D, H, B, A, ..., E, successively, and
returns to town D.

D H B A C F G E

B C D G H F E A

H B A C D G

F E

Pick up alphabets from the parents alternately.

Parents

Child

Add the rest of alphabets
in the random order.

Figure 3: Greedy Subtour Crossover

Algorithm: Greedy Subtour Crossover
Inputs: Chromosomes ga = (a0; a1; : : : ; an�1) and
gb = (b0; b1; : : : ; bn�1).
Outputs: The o�spring chromosome g.

procedure crossover(ga,gb) f
fa true
fb true
choose town t randomly
choose x, where ax = t
choose y, where by = t
g t
do f

x x � 1 (mod n),
y y + 1 (mod n).
if fa = true then f

if ax 62 g then f
g ax � g,

g else f
fa false.

g
g
if fb = true then f

if by 62 g then f
g g � by,

g else f

fb false.
g

g
g while fa = true or fb = true
if jgj < jgaj then f

add the rest of towns
to g in the random order

g
return g

g

Note that \�" in \g ax � g" is the concatenation
operator, and that sentence means to add ax before
the chromosome g.

An example is shown in Fig. 3. Suppose that chro-
mosomes of parents are ga = (D;H;B;A;C; F;G;E)
and gb = (B;C;D;G;H; F;E;A). First, choose one
town at random. In this example, town C is chosen.
Then, x = 4 and y = 1 because a4 = C and b1 = C
respectively. Now the child g is (C).

Next, pick up towns from the parents alternately.
Begin with a3 (town A) because x 4 � 1 = 3, and
next is b2 (town D) because y 1 + 1 = 2. The child
becomes g = (A;C;D).

In the same way, add a2 (town B), b3 (town
G), a1 (town H), and the child becomes g =
(H;B;A;C;D;G). Now the next town is b4 = H and
town H has already appeared in the child (remember
the salesperson may not visit the same town twice), so
we can't add any more towns from parent gb.

Therefore we add towns from parent ga. The next
town is a0 = D, but D is already used. Thus we can't
add towns from parent ga, either.

Then, we add the rest of the towns, i.e., E and F,
to the child in the random order. Finally the child is
g = (H;B;A;C;D;G; F;E).

2.3 Natural Selection

Eliminate R = M � pe=100 individuals. In the so-
called simple GA, the possibility of survival is pro-
portional to the �tness value, but we pay more atten-
tion to the diversity of the population. We eliminate
similar individuals to maintain the diversity in order
to avoid the immature convergence that is one of the
well-known problems in GA.

First, sort the individuals in �tness-value order.
Compare the �tness value of adjoining individuals. If
the di�erence is less than " (a small positive real num-
ber), eliminate preceding individual while the number
of eliminated individuals is less than R. Let r be the
number of eliminated individuals.

Next, if r < R, eliminate R � r individuals in the
order of lowest �tness value.

3 JAVA applet

3.1 Applet on WWW

We developed a JAVA applet based on the proposed
method, and put it on our WWW page:

http://www.hitachi.co.jp
/Div/sdl/e-naiyo/e-seika22/TSP.html

It is easy to use. First, using a mouse, put \towns"
in the rectangular �eld. Then, push the \start" but-
ton. The applet solves the problem you've just made
and displays the tour and its length (Fig. 4). The
parameters of the 2optGA method, i.e., \Population"
(M), \Selection" (pe), \2opt" (pi), are adjustable by
�lling out each �eld on the applet.

We announced the web page on the Net News in
Japanese (fj.* newsgroups) only once in July 1996.
Since then, the page has been accessed more than 200
times a month.

One person who sent us comments had mistakenly
thought that GA was a tool only for experiments, and
that GA would be so slow that it could not be applied
to practical problems. But after accessing our web
pages, he could understand why GA is usable.

Figure 5: Examples of the problems the students
made.

We utilized the web page for education. We intro-
duced the page to the students majoring in computer
science at the University of Tokyo and to the audience
at a Hitachi employee seminar. They enjoyed mak-

Netscape is a trademark of Netscape Communications Corporation.

Figure 4: applet on WWW

ing new problems one after another and executing the
applet. Some of those problems are shown in Fig. 5.

Some students added and removed a few towns in
their problems and watched the transformation of the
solution. Some tried to alter the parameters of the
2optGA and observe what would happen. Through
many trials, they got the feeling of the di�culty of
the TSP, and gained a concrete understanding of the
optimization problems.

A summary of comments from the students follows:

� Good Points

{ It's easy and fun.

{ I can see the progress of solving the problem
simultaneously.

{ I had thought that web pages were only for
reading, so I was surprised to see your page
for solving the TSP.

� Bad Points

{ No grid. The coordinates of the mouse are
not displayed, so I cannot put towns accu-
rately into the places I want.

{ I can't try pre-de�ned problems. I can't save
problems. (Note: the current version of the
applet can read the TSP �le that contains
the coordinates of towns.)

{ I want to see the convergence graph. I wish
to check not only the elite but also the other
individuals in the population. It would be
convenient if the CPU time consumed to
solve the problem was displayed.

We also present the following sample problems in
our WWW pages:

� randomly located 100 towns

� double circle 192 towns (\C"-type)

� double circle 192 towns (\O"-type)

Double circle problems were used as benchmarks
by Yamamura et al.[6] The minimum solutions of the
problems are known and they are either \C"-type or
\O"-type.

‘C’-type ‘O’-type

inner / outer = 3/5 inner / outer = 4/5

Figure 6: the minimum solutions of the double cir-
cle problems

As shown in Fig. 6, the type of solution that will
yield the minimum, depends on the number of towns
and the ratio of the radii of the inner and outer circles.

3.2 Stand-alone Application

The applet can also be used as a stand-alone ap-
plication. First, download class �les listed in Table 1

and sample problems listed in Table 2 from the URL:

http://www.hitachi.co.jp
/Div/sdl/e-naiyo/e-seika22/

Table 1: Class �les to download.

File name Size
Cities.class 3k
City.class 1k
GA.class 3k
Gene.class 3k
Sort.class 1k
Sortable.class 1k
TSP.class 8k
TspRoute.class 4k

Table 2: Sample problems.

File name Problem
gr96.data Africa-Subproblem of 666-city TSP
gr202.data Europe-Subproblem of 666-city TSP
test100.dat Randomly located 100 towns
c192-4682.dat Double circle 192 towns (\C"-type)
c192-4684.dat Double circle 192 towns (\O"-type)

\Africa-Subproblem of 666-city TSP" and \Europe-
Subproblem of 666-city TSP" are contained in
TSPLIB[5].

\TSP.class" contains the main method, so execute
that �le as a JAVA application with arguments `�le-
name' and `generation'. The �rst argument, `�le-
name', is the name of the TSP �le that contains the
location of towns of the TSP to be solved. The second
arguments, `generation', is the maximum generation
to be evolved. Optional ags listed in Table 3 can be
used.

Each line in the TSP �le represents the coordinates
of a town and consists of two �elds separated by a
comma. The �rst �eld means the X coordinate of the
town and the second �eld means the Y coordinate.
The cost between two towns is measured as the Eu-
clidean distance between the coordinates of each town.

If the TSP �le contains the line

EDGE_WEIGHT_TYPE: GEO

the cost is de�ned by the geographical distance of
two towns, i.e., the distance on the earth, instead of

Table 3: Optional ags of TSP.class

Option Meaning Default
-p M The population 100
-e pe Eliminate pe%

individuals
30

-R pi Improve pi% individuals
by 2opt

20

-v Increment verbosity
level

the Euclidean distance. The X and Y coordinates de-
scribed above mean the latitude and the longitude re-
spectively.

If the TSP �le contains the line

Min: n

where n is the positive real number, the program
will stop when the elite, whose tour length is n, is
found.

On Windows295 with the Java Development Kit
(JDK)[7], for example, type the following command
in the \MS-DOS2 Prompt" window.

java TSP -v -p 200 gr96.data 300

That command means to solve the TSP stored
in the �le `gr96.data' (Africa-Subproblem of 666-city
TSP in TSPLIB[5]), where the population is 200, and
the maximum generation is 300.

The output from the command follows (partially
omitted):

C:\>java TSP -v -p 200 gr96.data 300
File: gr96.data

Population: 200
Selection: 30 %
2 opt: 20 %

1:3[93 94 92 91 76 �������������������� 27 64 95]57284
2:253[94 93 95 64 65 ���������������� 76 91 92]55840
3:119[37 34 33 32 10 ���������������� 31 35 36]55481

19:1251[49 51 52 54 50 ������������ 47 46 45]55332
44:2646[93 94 92 91 76 ������������ 65 64 95]55322
120:7132[41 40 39 38 78 ���������� 49 48 42]55291

165:9780[49 45 46 47 53 ���������� 54 52 51]55259
180:10692[52 51 49 45 46 �������� 48 50 54]55209

The program outputs the elite, when a new elite is

2MS-DOS and Windows are registered trademarks of Mi-

crosoft Corporation

found, in the following format:

g : i [tour] `

where g, i, tour, and ` mean the generation, the
ID of the individual, the tour (a list of towns in the
visiting order) that corresponds to the individual, and
the length of the tour.

The last line, for example, says that a new elite is
found at 180th generation, it is the 10692nd individual,
and the length of the tour is 55209. According to
TSPLIB, it is the minimum solution.

4 Conclusion

We presented an algorithm for rapid solution of the
TSP that combines the GA and the 2opt method. We
published a program based on the algorithm on our
web pages. Because the program is written in JAVA
language and can be executed on many platforms, any-
one can verify the e�ciency of our algorithm. Anyone
who designed a new algorithm can compare his own
TSP solver with ours by running both programs on the
same machine. Our TSP solver is useful as a criterion
for evaluating the performance of TSP solvers.

References

[1] Holland, J.H.: Adaptation in Natural and Arti�-
cial Systems, Univ. of Michigan Press (1975)

[2] Sengoku, H., Yoshihara, I.: A Fast TSP Solu-
tion using Genetic Algorithm (Japanese), Infor-
mation Processing Society of Japan 46th Nat'l
Conv. (1993)

[3] Sengoku, H., Yoshihara, I.: An Evaluation of Op-
timizing Capability of Genetic Algorithm | GA
vs SA | (Japanese), Information Processing So-
ciety of Japan 47th Nat'l Conv. (1993)

[4] Moscato, P.: TSPBIB, http://www.ing.unlp.edu.
ar/cetad/mos/TSPBIB_home.html

[5] Reinelt, G.: TSPLIB, ftp://softlib.rice.edu/pub/
tsplib/tsplib.tar

[6] Yamamura, M., Ono, T., Kobayashi, S.:
Character-Preserving Genetic Algorithms for
Traveling Salesman Problem (Japanese), Jour-
nal of Japanese Society for Arti�cial Intelligence
Vol.7, No.6 (1992)

[7] Cornell, G., Horstmann, C.S.: core JAVA, Sun-
Soft Press (1996)

